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Abstract

We gather here some general facts on homogeneous manifolds and their corresponding left-
invariant connections. For the case of Riemannian naturally reductive homogeneous spaces, we
also discuss their Jacobi fields.

1 Introduction and notation

Let Mn = G/K be a homogeneous manifold of a Lie group G (which we will usually assume to
be connected). We say that an affine connection ∇ on M is left-invariant if for every X, Y ∈ X(M)
and g ∈ G, we have

∇g∗Xg∗Y = g∗∇XY. (1)

On the other hand, consider a homogeneous S-structure π : P → M, where S ≤ GL(n,R). This
means that P is a reduction of the frame bundle F(M) of M with structure group S. A principal
connectionω : TP → s is left-invariant if for every g ∈ G, we have

s∗ω = ω. (2)

It is easy to see that the bijective correspondence between principal connections in P and affine
conenctions in M restricts to a bijective correspondence between invariant connections in P and
adapted invariant affine connections inM.

We aim to give a description of these connections in Lie algebraic terms, as well as explicit
formulae for the curvature and torsion tensors, given by

R(X, Y) =[∇X,∇Y ] − ∇[X,Y],

T(X, Y) =∇XY − ∇YX− [X, Y].

The main reference for the first five sections is [3].

2 Wang’s theorem for invariant connections

We start by stating the theorem of Wang, which allows us to characterize invariant connections
on P. Let o = eK and fix a frame u0 ∈ P. Then we may define a Lie group homomorphism
λ : K → S via the equation k · u0 = u0 · λ(k) for k ∈ K. For geometric structures, we actually have
k · u0 = k∗o ◦ u0 and u0 · λ(k) = u0 ◦ λ(k), which means that

λ(k) = u−1
0
◦ k∗o ◦ u0. (3)

This implies that λ is actually the isotropy representation ofM.
We can now state the first version of Wang’s theorem, copied verbatim from [3, Chapter II,

Proposition 11.3].
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Theorem 1. There is a bijective correspondence between the set of invariant connections on P and the set
of linear maps Λ : g → s that satisfy the following conditions:

1. Λ(X) = λ∗(X) for all X ∈ k.

2. Λ(Ad(k)X) = Ad(λ(k))X for all X ∈ g and k ∈ K, that is, Λ is K-equivariant.

The correspondence is explicitly given as follows: for an invariant connection ω, we define the associated
Λ via

Λ(X) = ω

(
d

dt

∣∣∣∣∣
t=0

Exp(tX) · u0

)
, X ∈ g. (4)

For S = GL(n,R) (that is, for arbitrary connections), we can rewrite the previous result without
choosing a frame u0. In order to do this, recall that there is a vector space isomorphism

ϕ : X+ k ∈ g/k 7−→ X∗o ∈ ToM, (5)

where X∗ is the fundamental vector field corresponding to X. Choose an isomorphism v0 : Rn →
g/k such that u0 = ϕ ◦ v0 belongs to P. Then any map Λ : g → gl(n,R) can be reinterpreted as a
map Γ : g → gl(g/k) via

Γ(X) = v0 ◦Λ(X) ◦ v
−1
0
.

On the other hand, the isotropy representation can be converted to a homomorphism µ : K →
gl(g/k) by taking

µ(k) = ϕ−1
◦ k∗o ◦ ϕ = Ad(k).

Then Λ satisfies the conditions of the theorem if and only if Γ(X) = µ∗(X) for X ∈ k (that is, Γ |k is
the isotropy representation) and for X ∈ g and k ∈ k we have Γ(Ad(k)X) = Ad(µ(k))Γ(X).

In conclusion, we have:

Theorem 2. There is a bijective correspondence between the set of invariant connections on F(M) and the
set of linear maps Γ : g → gl(g/k) that satisfy:

1. Γ(X) = µ∗(X) for all X ∈ k, where µ : K → GL(g/k) is the isotropy representation.

2. Γ(Ad(k)X) = Ad(µ(k))Γ(X) for X ∈ g and k ∈ K.

The correspondence is described as follows: for a fixed isomorphism v0 : Rn → g/k, let u0 = ϕ ◦ v0. Then
to any connectionω ∈ Ω1(F(M), gl(n,R)) we associate the map Γ defined by

Γ(X) = v0 ◦ω

(
d

dt

∣∣∣∣∣
t=0

Exp(tX) · u0

)
◦ v−1

0
. (6)

It is easy to check that the definition of Γ is independent of the frame chosen for g/k. From
now on, we will also refer to Γ as a connection.

Remark 1. We can interpret Wang’s theorem in the following way. Note that g and k are rep-
resentations of K via the adjoint action, while gl(g/k) is also a K-module via the representation
k ∈ K → Ad(Ad(k)) ∈ GL(gl(g/k)). Then the theorem states that giving an invariant connection
onM is the same as giving a K-equivariant extension of ad : k → gl(g/k) to g.

We now aim to derive a formula for the covariant derivative ∇ associated to a homogeneous
connection Γ . Note that for X ∈ g and V ∈ X(M), we have

∇X∗V = ∇VX
∗ + [X∗, V] + T(X∗, V),

so if we know how to take covariant derivatives of vector fields induced by g and we know the
torsion tensor at o, we have a complete description of ∇. The torsion tensor will be determined in
Section 3.
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Recall that, in general, if M is a smooth manifold and ω is a connection on its frame bundle,
the covariant derivative ∇ associated withω is given by

(∇VW)p = u(DFW(V̄)),

where p ∈ M, u is a frame at p, FW : F(M) → Rn is defined by FW(v) = v−1(Wπ(v)), D denotes
the exterior covariant derivative and V̄ is any lift of V to p. Alternatively,

(∇VW)p = u(dFW(V̄) +ω(V̄)FW(u)). (7)

In our case, we have p = o, u = u0, and a lift of Z∗ ∈ X(M) is merely Z∗ ∈ X(P). A direct
computation yields:

Theorem 3. If Γ : g → gl(g/k) is any connection, then the corresponding covariant derivative ∇ satisfies

∇X∗oY
∗ =− [X, Y]∗o + ϕ ◦ Γ(X) ◦ ϕ−1(Y∗o)

=ϕ
(
−[X, Y] + Γ(X)Y

) (8)

for all X, Y ∈ g, where (·̄) denotes the projection to g/k.

3 Curvature and torsion

In this section we derive expressions for the curvature and torsion tensors associated to a connec-
tion Γ . To this end, we start by determining the curvature and torsion two-forms at vector fields
of the form X∗, where X ∈ g. We keep the notation of the previous section.

Firstly, recall that the curvature formΩ can be computed by Cartan’s first structure equation

Ω(V,W) = Dω(V,W) = dω(V,W) + [ω(V),ω(W)],

where V,W ∈ X(P). If we let V = X∗ andW = Y∗ for X, Y ∈ g, we obtain

Ω(X∗u0
, Y∗u0

) = [Λ(X), Λ(Y)] −Λ([X, Y]). (9)

On the other hand, the curvature tensor R for an arbitrary connectionω is related to the curvature
form via the equation

(R(U,V)W)p = u(Ω(Ū, V̄)u−1(W)),

where U, V , W ∈ X(M), p ∈ M, u is a frame at p and Ū, V̄ are lifts of U and V to F(M). As a
consequence, for X, Y, Z ∈ g, we get

(R(X∗, Y∗)Z∗)o = ϕ
(
[Γ(X), Γ(Y)]Z− Γ([X, Y])Z

)
. (10)

Equivalently, we may think of the curvature tensor as a map R : g/k× g/k → gl(g/k), and it is given
by

R
(
X, Y

)
= [Γ(X), Γ(Y)] − Γ([X, Y]). (11)

We now compute the torsion: recall that F(M) is endowed with a solder form ϑ : TF(M) → Rn

defined by ϑu(ξ) = u−1(π∗u(ξ)). The torsion two-form Θ can be computed from the second
structure equation

Θ(V,W) = Dϑ(V,W) = dϑ(V,W) +ω(V)ϑ(W) −ω(W)ϑ(V).

For U = X∗ and V = Y∗, a simple calculation gives us

Θ(X∗u0
, Y∗u0

) = Λ(X)v−1
0

(
Y
)
−Λ(Y)v−1

0

(
X
)
− v−1

0

(
[X, Y]

)
, (12)
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and since the torsion tensor is generally computed via

T(U,V)p = u(Θ(Ū, V̄)),

we finally obtain
T(X∗o, Y

∗

o) = ϕ
(
Γ(X)Y − Γ(Y)X− [X, Y]

)
. (13)

If we view the torsion tensor as a map T : g/k × g/k → g/k, then we have showed that

T
(
X, Y

)
= Γ(X)Y − Γ(Y)X− [X, Y]. (14)

We summarize everything in this

Theorem 4. LetM = G/K be an arbitrary homogeneous space and Γ : g → gl(g/k) an invariant connection
onM. Then the following formulae are valid for all X, Y ∈ g and V ∈ X(M):

1. Formula for the covariant derivative for induced fields:

∇X∗oY
∗ = ϕ

(
−[X, Y] + Γ(X)Y

)
. (15)

2. Formula for the covariant derivative of arbitrary vector fields:

∇X∗oV = [X∗, V]o + ϕ
(
Γ(X)ξ

)
, (16)

where ξ ∈ g is any vector such that ξ∗o = Vo.

3. Formula for the torsion tensor:

T
(
X, Y

)
= Γ(X)Y − Γ(Y)X− [X, Y]. (17)

4. Formula for the curvature tensor:

R
(
X, Y

)
= [Γ(X), Γ(Y)] − Γ([X, Y]). (18)

4 Reductive homogeneous spaces

A homogeneous space M = G/K is reductive if we can decompose g = k ⊕ p as a direct sum of
K-modules (this is known as a reductive decomposition). This is the same as saying that the short
exact sequence of K-modules

0 −→ k −→ g −→ g/k −→ 0

splits. This allows us to give identifications ToM � g/k � p, simply by restricting ϕ to p.

Remark 2. Every (effective) Riemannian homogeneous space is reductive, as is shown in [2].

The description of invariant connections in reductive homogeneous spaces becomes particu-
larly nice, as giving an extension of ad : k → gl(g/k) � gl(p) in this case is the same as giving a
K-equivariant map Γ : p → gl(g/k) � gl(p), which in turn is the same as a K-invariant bilinear map
α : p × p → p. This allows us to give (yet) another formulation of Wang’s theorem, commonly
known as Nomizu’s theorem:

Theorem 5. LetM = G/K be a reductive homogeneous space with corresponding decomposition g = k⊕p.
Then there is a bijective correspondence between the set of invariant affine connections in M and the set of
bilinear forms α : p × p → p which are K-invariant, in the sense that

α (Ad(k)X,Ad(k)Y) = Ad(k)α(X, Y) (19)

for all X, Y ∈ p and k ∈ K.
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Proof. The explicit isomorphism gl(g/k) � gl(p) takes f : g/k → g/k to ψ|−1
p ◦ f ◦ψ|p, where ψ is the

projection to g/k. Given a connection Γ : g → gl(g/k), we define α : p × p → p by

α(X, Y) = ψ|−1
p (Γ(X)Y), (20)

and it is easily checked that α is invariant. Conversely, if α is an invariant bilinear form on p,
define Γ : p → gl(g/k) by

Γ(X)Y = ψ(α(X,ψ|−1
p (Y))) = ψ(α(X, Yp)). (21)

This map is equivariant, and we extend it to g by simply declaring Γ = ad on k, giving us an
invariant connection. It is straightforward to check that these constructions are mutually inverse
to each other. □

Remark 3. Nomizu’s theorem relates invariant connections onM to nonassociative algebra struc-
tures on p such that K acts by algebra automorphisms.

As an application of Equation (20), we deduce a new (and simpler) set of formulae for invariant
connections on the reductive case.

Theorem 6. LetM = G/K be a reductive homogeneous space with reductive decomposition g = k⊕ p and
consider an arbitrary invariant connection α : p × p → p. Then the following formulae hold for X, Y ∈ p
and V ∈ X(M):

1. Formula for the covariant derivative of induced fields:

∇X∗oY
∗ = −[X, Y]∗o + α(X, Y)∗o = (−[X, Y]p + α(X, Y))

∗

o. (22)

2. Formula for the covariant derivative of arbitrary vector fields:

∇X∗oV = [X∗, V]o + α(X, ξ)∗o, (23)

where ξ ∈ p is the unique vector such that ξ∗o = Vo.

3. Formula for the torsion tensor:

T(X, Y) = α(X, Y) − α(Y, X) − [X, Y]p. (24)

4. Formula for the curvature tensor:

R(X, Y)Z = α(X,α(Y, Z)) − α(Y, α(X,Z)) − [[X, Y]k, Z] − α([X, Y]p, Z). (25)

5 Examples of invariant connections

We now go with some examples:

5.1 The canonical connection.

This is the connection ∇c associated with the map α = 0. In this case we have for X, Y, Z ∈ p:

∇
c
XY = −[X, Y]p,

Tc(X, Y) = −[X, Y]p,

Rc(X, Y)Z = −[[X, Y]k, Z].

(26)

Theorem 7. A tensor field T onM is G-invariant if and only if ∇cT = 0.
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Remark 4. For any invariant connection ∇, the difference tensor ∇− ∇c is precisely α.

Observe that since ∇c
X
X = 0 for all X ∈ p, the geodesics ofM at o are given by

expo(tX) = Exp(tX) · o. (27)

For the same reason, any connection ∇ has the same geodesics as ∇c if and only if α is skew-
symmetric. We also note that parallel translation along Exp(tX) ·o is given by (Exp(tX))∗o (see for
example [2, Corollary 1.4.13]).

5.2 The natural torsion-free connection.

This is the connection ∇̃ associated with the map

α̃(X, Y) =
1

2
[X, Y]p, (28)

equivalently, it is the unique invariant connection on M which has zero torsion and whose
geodesics are given by (27). We have for X, Y, Z ∈ p:

∇̃XY =−
1

2
[X, Y]p,

R̃(X, Y)Z =
1

4
[X, [Y, Z]p]p −

1

4
[Y, [X,Z]p]p − [[X, Y]k, Z] −

1

2
[[X, Y]p, Z]p.

(29)

6 Riemannian homogeneous spaces

Let M = G/K be a Riemannian homogeneous space. Then, if we assume that G acts effectively,
we know that there exists a reductive decomposition g = k ⊕ p. We pull back the Riemannian
metric on ToM to an inner product on p. The Levi-Civita connection ∇ ofM is an invariant affine
connection, and its corresponding Nomizu map α is given by

α(X, Y) =
1

2
[X, Y]p +U(X, Y), (30)

where U : p × p → p is the symmetric tensor defined implicitly by

2⟨U(X, Y), Z⟩ = ⟨[Z,X]p, Y⟩+ ⟨X, [Z, Y]p⟩. (31)

The operator ∇ satisfies

∇XY = −
1

2
[X, Y]p +U(X, Y). (32)

More generally, if V ∈ X(M) and ξ ∈ p is such that ξ∗o = Vo, then

∇X∗oV = [X∗, V]o +
1

2
[X, ξ]∗o +U(X, ξ)∗o. (33)

We say thatM is naturally reductive ifU = 0, or equivalently, if∇ is precisely the natural torsion-free
connection. Symmetric spaces are naturally reductive and also satisfy [p, p] ⊆ k.

7 Olmos’ magic formula

We now present a general formula that describes parallel transport along the flow lines of a Killing
field for a torsion-free connection ∇ on a manifold M, which we will kindly refer to as Olmos’
magic formula.
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Remark 5. As far as I know, Olmos’ magic formula was not introduced by Olmos.

Let (M,∇) be an affine manifold. A complete vector field X ∈ X(M) is an affine Killing field if
the flow of X consists of affine maps, or equivalently, if the Lie derivative LX∇ is zero. Let p ∈M
be arbitrary, and consider the flow line γ(t) = ϕt(p). We aim to compare the parallel transport
Pt : TpM→ Tγ(t)M and the differential of the flow (ϕt)∗p : TpM→ Tγ(t)M.

Let v ∈ TpM and consider any curve α(s) on M such that α ′(0) = v. Then we can construct a
variation of α by letting Γ(t, s) = ϕt(α(s)). The mixed partial derivatives of Γ at (0, 0) are

∇

dt

∂

∂s
Γ(0, 0) =

∇

dt

∣∣∣∣∣
t=0

(ϕt)∗pv =
d

dt

∣∣∣∣∣
t=0

P
−1
t (ϕt)∗p(v),

∇

ds

∂

∂t
Γ(0, 0) =

∇

ds

∣∣∣∣∣
s=0

Xα(s) = ∇vX.

We conclude then that

d

dt

∣∣∣∣∣
t=0

P
−1
t (ϕt)∗p(v) = ∇vX+ T

(
∂Γ

∂t
(0, 0),

∂Γ

∂s
(0, 0)

)
= ∇vX+ T(Xp, v) =: τX(v). (34)

Now, since X is affine, the map t ∈ R 7→ P
−1
t (ϕt)∗p ∈ GL(ToM) is a one-parameter subgroup.

Combining this with (34), we deduce

Theorem 8 (Olmos’ magic formula).

P
−1
t ◦ (ϕt)∗p = etτX . (35)

It will be especially interesting for us to consider the case of (Riemannian) Killing fields, where
the formula becomes

P
−1
t ◦ (ϕt)∗p = et∇X. (36)

8 Naturally reductive homogeneous spaces

We now dive deeper into the geometry of a naturally reductive homogeneous space.
First of all, for each X ∈ p, we can apply Olmos’ magic formula (36) to deduce that

P
−1
t ◦ Exp(tX)∗o = et∇X

∗

(37)

along the geodesic Exp(tX) · o. Note that ∇X∗ corresponds to the map τX : p → p defined by
τX(Y) =

1
2
[X, Y]p. We will use this formula shortly to derive explicit expressions for Jacobi fields.

8.1 Jacobi fields

Let γ(t) = Exp(tξ) · o for a nonzero vector ξ ∈ p. A vector field J(t) along γ(t) is called a Jacobi
field if it satisfies the differential equation

∇
2

dt2
J(t) + R(J(t), γ ′(t))γ ′(t) = 0. (38)

This differential equation arises when trying to compute the differential of the exponential map
or the extrinsic geometry of certain submanifolds, such as geodesic spheres, tubes or equidistant
hypersurfaces. The vector fields γ ′(t) and tγ ′(t) are trivial examples. We are interested in
producing more examples and giving a computationally efficient description of those. We do this
following Ziller [5].
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Remark 6. Since ∇ and ∇c have the same geodesics, it follows that J(t) is a Jacobi field if and only
if it satisfies the following differential equation involving ∇c:

(∇c)2

dt2
J(t) + Rc(J(t), γ ′(t))γ ′(t) + Tc(∇c

tJ(t), γ
′(t)) = 0. (39)

If we write J(t) = Exp(tξ)∗o(Z(t)) for a curve Z(t) in p, then using the fact that Rc and Tc are
∇
c-parallel we get that (39) becomes

Z ′′(t) + Rc(Z(t), ξ)ξ+ Tc(Z ′(t), ξ) = 0,

that is:
Z ′′(t) − [[Z(t), ξ]k, ξ] − [Z ′(t), ξ]p = 0.

Define operators Rξ, Tξ : p → p via

Rξ(v) = −[[v, ξ]k, ξ], Tξ(v) = [ξ, v]p. (40)

We conclude that the Jacobi equation for Z(t) becomes

Z ′′(t) + TξZ
′(t) + RξZ(t) = 0. (41)

8.1.1 A reasonable approach

We give a list of Jacobi fields that, in the compact case, actually generate all the Jacobi fields on
M. Nevertheless, the fact that the fields presented satisfy the Jacobi equation is independent of
the compactness ofM.

1. Let X ∈ g be arbitrary. Then, since X∗ is a Killing field, the restriction Jk
X
(t) = X∗(γ(t)) is a

Jacobi field with initial conditions{
Jk
X
(0) = Xp,

∇tJ
k
X
(0) = −[ξ, X]p +

1
2
[ξ, Xp]p.

(42)

It is clear that Jk
X

is orthogonal to γ ′ if and only if X ∈ k ⊕ (p ⊖Rξ). Applying Olmos’ magic
formula, we see that

JkX(t) = Pte
tτξ

(
e−t ad(ξ)X

)
p
. (43)

2. Let X ∈ p and define Jl
X
(t) = Exp(tξ)∗o(X). Then Jl

K
(t) is a Jacobi field if and only if RξX = 0.

If this is the case, its initial conditions areJ
l
X
(0) = X,

∇tJ
l
X
(0) =

d

dt

∣∣∣∣∣
t=0

P
−1
t Exp(tξ)∗o(X) = ∇Xξ

∗ = 1
2
[ξ, X]p.

(44)

The field Jl
X

is orthogonal to γ ′ if and only if X ∈ p ⊖ Rξ. From Olmos’ Magic formula, we
get

JlX(t) = Pt

(
etτξX

)
. (45)

3. Let X, Y ∈ p, and define JX,Y(t) = Exp(tξ)∗o(X+ tY). In this case, JX,Y is a Jacobi field if and
only if TξY + RξX = 0. The initial conditions of JX,Y areJX,Y(0) = X,

∇tJX,Y(0) =
d

dt

∣∣∣∣∣
t=0

etτξ(X+ tY) = 1
2
[ξ, X]p + Y.

(46)

We have that JX,Y is orthogonal to γ ′ if and only if X, Y ∈ p ⊖Rξ. Using once again Olmos’
magic formula:

JX,Y(t) = Pt

(
etτξ(X+ tY)

)
(47)
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Then from [5] we obtain:

Theorem 9. If M = G/K is a compact naturally reductive homogeneous space, then every Jacobi field
along Exp(tξ) · o is a linear combination of the fields given in 1, 2 and 3.

8.1.2 A brute force approach

We define a system of linear differential equations on p ⊕ p whose solutions are Jacobi fields:{
A ′(t) = B(t),

B ′(t) = −RξA(t) − TξB(t).
(48)

From (41), we see that (A(t), B(t)) is a solution of the ODE system if and only if the vector field
J(t) = Exp(tX)∗o(A(t)) is a Jacobi field. Note that this is a system with constant coefficients, where
the coefficient matrix is given by

C =

(
0 Idp

−Rξ −Tξ

)
,

so the Jacobi fields along γ(t) are obtained by projecting all curves of the form etC(A0, B0)
t. The

initial conditions of J(t) areJ(0) = A0,

∇tJ(0) =
d

dt

∣∣∣∣∣
t=0

etτξ(A(t)) = 1
2
[ξ,A0]p + B0,

(49)

and the Jacobi fields that are normal to γ ′ are obtained by choosing A0, B0 ∈ p ⊖ Rξ. We can
rewrite J(t) via Olmos’ magic formula, obtaining

J(t) = Pt

(
etτξA(t)

)
. (50)

It is worth noting that the length of J coincides with |A(t)|, as etτξ is an isometry.

8.2 Tubes around a homogeneous submanifold N ⊆M.

Let N ⊆M be an orbit of a subgroup of G at o, and let v ⊆ p be its tangent space. Let Nt
⊆M be

the tube of radius t aroundN, which we will assume that is a submanifold ofM. We compute the
extrinsic geometry of Nt.

Choose any ξ ∈ p ⊖ v, and let γ(t) = Exp(tξ) · o be its corresponding geodesic. We recall that
an N-Jacobi field along γ(t) is a Jacobi field J(t) such that{

J(0) ∈ ToN,

∇tJ(0) + SξJ(0) ∈ νoN,
(51)

where Sξ denotes the shape operator of ξ at o. The space of all N-Jacobi fields along γ has
dimension dimM− 1, and we actually have

Tγ(t)N
t = {J(t) : J is N-Jacobi and ∇tJ(0) ⊥ ξ} = Tγ(t)M ⊖Rγ

′(t). (52)

Furthermore, the shape operator Sγ ′(t) : Tγ(t)N
t → Tγ(t)N

t satisfies

Sγ ′(t)J(t) = ∇tJ(t). (53)

We now pull back everything to p via Olmos’ magic formula.
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8.2.1 Computations with left translates.

Let J(t) = Exp(tξ)∗o(Z(t)) for a curve Z(t) in p. Then J(t) is an N-Jacobi field if and only if (41)
holds, Z(0) ∈ v and 1

2
[ξ, Z(0)]p + Z

′(0) + SξZ(0) ∈ p ⊖ v.
The tangent space ofMt is

Tγ(t)M
t = Pt(p ⊖Rξ). (54)

Since J(t) = Pt (e
tτξZ(t)), the shape operator Sγ ′(t) satisfies

Sγ ′(t)Pt(e
tτξZ(t)) = Pt

(
1

2

[
ξ, etτξZ(t)

]
p
+ etτξZ ′(t)

)
. (55)

This means that we may identify the shape operator ofNt with the linear mapSt : p⊖Rξ→ p⊖Rξ
defined by

Ste
tτξZ(t) =

d

dt

(
etτξZ(t)

)
=
1

2

[
ξ, etτξZ(t)

]
p
+ etτξZ ′(t). (56)

Suppose we are given a basis {Z1, ..., Zn−1} of N-Jacobi fields along γ. Let (aij(t)) be the matrix
of St with respect to the basis {etτξZ1(t), . . . , e

tτξZn−1(t)}. Then

d

dt

(
etτξZj(t)

)
= Ste

tτξZj(t) =

n−1∑
i=1

aij(t)e
tτξZi(t),

and for each k,〈
d

dt

(
etτξZj(t)

)
, etτξZk(t)

〉
=

n−1∑
i=1

aij(t)⟨e
tτξZi(t), e

tτξZk(t)⟩ =

n−1∑
i=1

aij(t)⟨Zi(t), Zk(t)⟩.

We may write this in terms of matrices as(〈
etτξZi(t),

d

dt

(
etτξZj(t)

)〉)
= (⟨Zi(t), Zj(t)⟩) (aij(t))

so
(aij(t)) = (⟨Zi(t), Zj(t)⟩)

−1
(〈
etτξZi(t),

d

dt

(
etτξZj(t)

)〉)
. (57)

8.2.2 Computations with parallel translates.

Keep the notation as before, so J(t) = Exp(tξ)∗o(Z(t)) for Z : R → p a solution of the Jacobi
equation (41). Define Y(t) = etτξZ(t). If {Z1, . . . , Zn−1} is a basis of N-Jacobi fields along γ, then
the corresponding curves {Y1, ..., Yn−1} are such that the set

{PtY1(t), . . . ,PtYn−1(t)}

is a basis of Tγ(t)Nt. Since
Sγ ′(t)PtY(t) = PtY

′(t), (58)

we can identify Sγ ′(t) with the map St : p ⊖Rξ→ p ⊖Rξ defined by

StY(t) = Y
′(t). (59)

The matrix (aij(t)) of Sγ ′(t) with respect to our basis is

(aij(t)) = (
〈
Yi(t), Yj(t)

〉
)−1

(〈
Yi(t), Y

′

j (t)
〉)
. (60)
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9 The second fundamental form of an orbit

Let M = G/K be a Riemannian homogeneous space with reductive decomposition g = k ⊕ p, and
S a subgroup of G. If X, Y ∈ sp are tangent vectors to S · o, we compute their second fundamental
form II(X, Y). This derivation is based on the one done by Solonenko in [4]. See [1] for an
alternative approach.

Consider a vector Z ∈ g such that Zp = Y. Then we have

∇X∗Z
∗ =[X∗, Z∗]o +

1

2
[X, Y]∗o +U(X, Y)∗o =

(
−[X,Zk] − [X, Y] +

1

2
[X, Y] +U(X, Y)

)∗
o

=
(
−[X,Zk] −

1

2
[X, Y] +U(X, Y)

)∗
o
=

([
Zk +

1

2
Y, X

]
+U(Y, X)

)∗
o
.

By symmetry of the second fundamental form, we may rewrite this as

II(X, Y) =
([
Xk +

1

2
X, Y

]
+U(X, Y)

)⊥
p
, (61)

where Xk is any vector in k such that Xk +X ∈ s, and (·)⊥ denotes the orthogonal projection from p
to p ⊖ sp.
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